
Entropy and Free Energy

How to predict if a reaction can occur at a reasonable rate?

How to predict if a reaction can occur, given enough time? THERMODYNAMICS

Thermodynamics

- If the state of a chemical system is such that a rearrangement of its atoms and molecules would decrease the energy of the system----
- AND the K is greater than 1,
- then this is a product-favored system.
- Most product-favored reactions are exothermic
 - —but this is not the only criterion

Thermodynamics

 Both product- and reactant-favored reactions can proceed to equilibrium in a **Spontaneous** process.

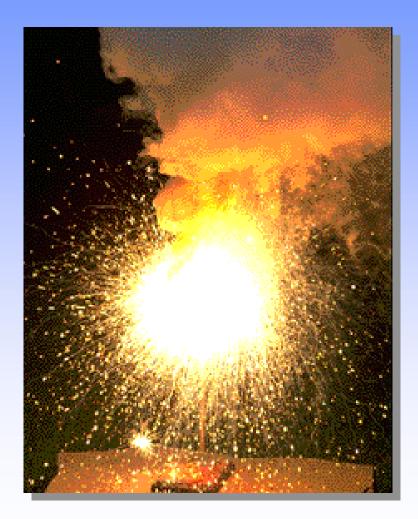
AgCl(s) e Ag⁺(aq) + Cl[−](aq) K = 1.8 x 10⁻¹⁰

Reaction is not product-favored, but it moves spontaneously toward equilibrium.

Spontaneous does not imply anything about time for reaction to occur.

Thermodynamics and Kinetics

Diamond is thermodynamically favored to convert to graphite, but not kinetically favored.

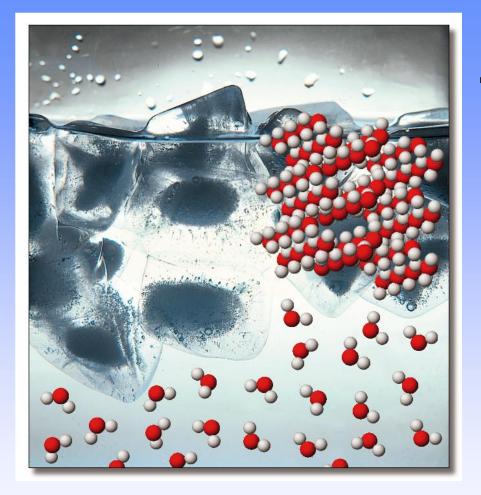

Paper burns — a product-favored reaction. Also kinetically favored once reaction is begun.

Spontaneous Reactions

- In general, spontaneous reactions are exothermic.
- $Fe_2O_3(s) + 2 AI(s) --->$ 2 Fe(s) + AI₂O₃(s) $\triangle H = -848 kJ$

But many spontaneous reactions or processes are endothermic or even have $\triangle H = 0$.

$NH_4NO_3(s) + heat ---> NH_4NO_3(aq)$


One property common to spontaneous processes is that the final state is more **DISORDERED** or **RANDOM** than the original.

Spontaneity is related to an increase in randomness.

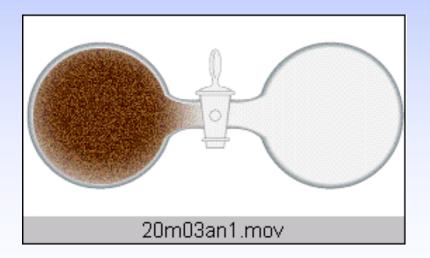
The thermodynamic property related to randomness is **ENTROPY, S**.

Reaction of K with water

The entropy of liquid water is greater than the entropy of solid water (ice) at 0° C. Directionality of Reactions

How probable is it that reactant molecules will react?

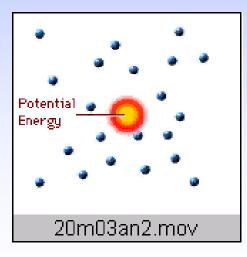
PROBABILITY suggests that a spontaneous reaction will result in the dispersal

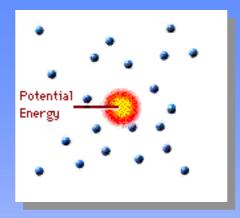

- * of energy
- * or of matter

* or of energy & matter.

Directionality of Reactions

Probability suggests that a spontaneous reaction will result in the dispersal of energy or of matter or both.

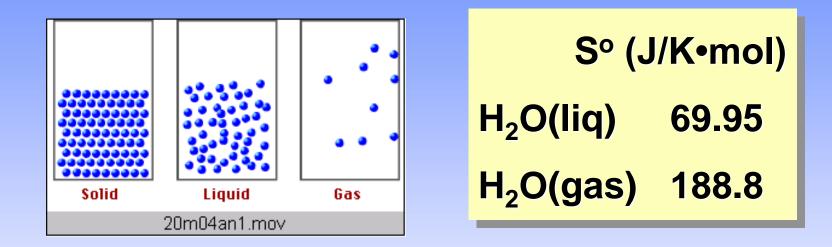

Matter Dispersal



Directionality of Reactions

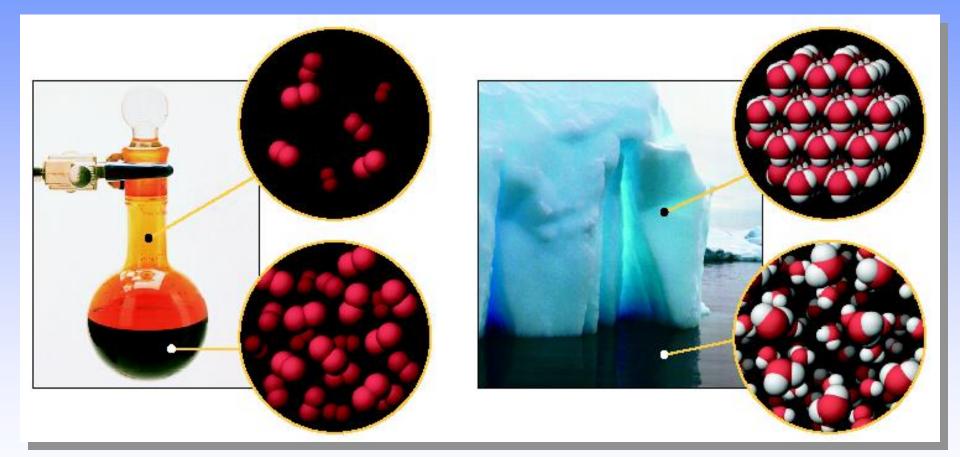
Probability suggests that a spontaneous reaction will result in the dispersal of energy or of matter or both.

Energy Dispersal


Directionality of Reactions Energy Dispersal

Exothermic reactions involve a release of stored chemical potential energy to the surroundings.

The stored potential energy starts out in a few molecules but is finally dispersed over a great many molecules.

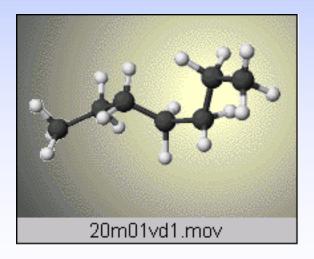

The final state—with energy dispersed—is more probable and makes a reaction spontaneous.

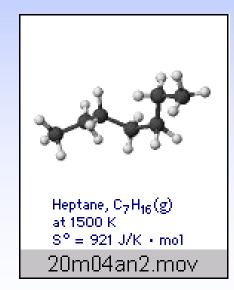
Entropy, S

S (gases) > S (liquids) > S (solids)

Entropy and States of Matter

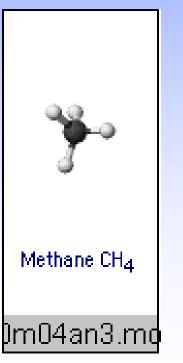
$S^{\circ}(Br_2 liq) < S^{\circ}(Br_2 gas)$

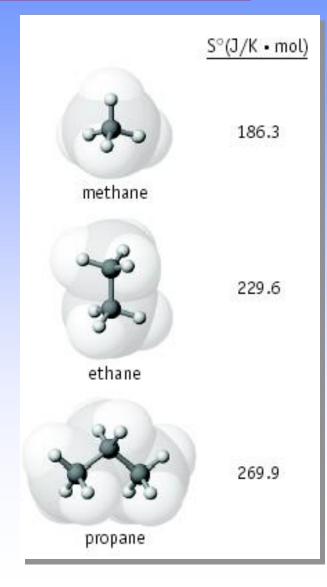

$S^{\circ}(H_2O \text{ sol}) < S^{\circ}(H_2O \text{ liq})$


Entropy, S

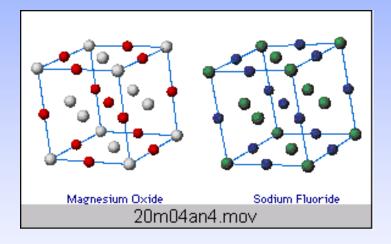
Entropy of a substance increases with temperature.

Molecular motions of heptane, C₇H₁₆

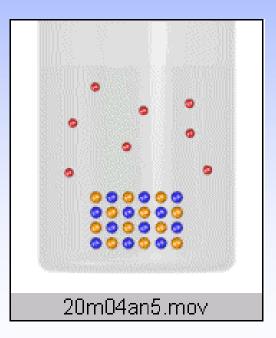

Molecular motions of heptane at different temps.



Entropy, S


Increase in molecular complexity generally leads to increase in S.

Entropies of ionic solids depend on coulombic attractions.



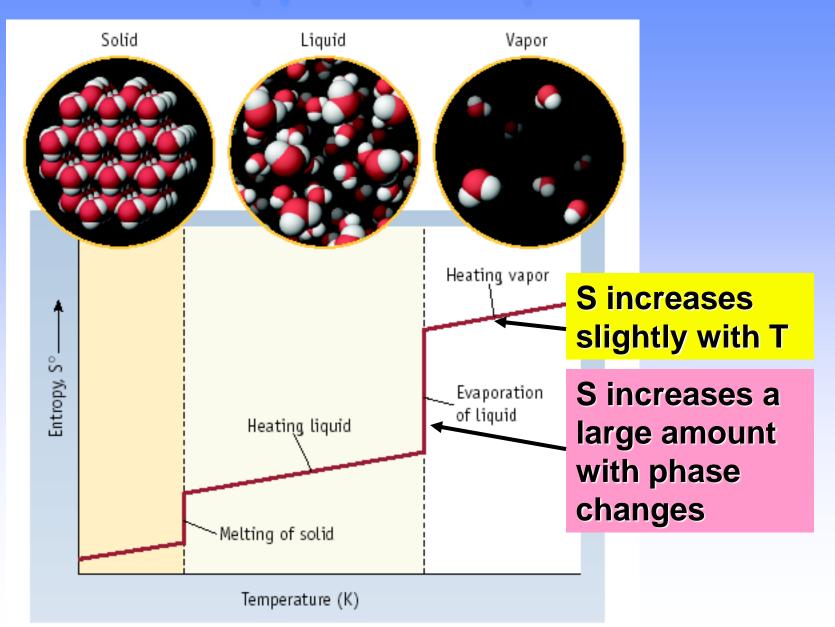
	Sº (J/K•mol)	
MgO	26.9	
NaF	51.5	

Mg²⁺ & O²⁻ Na⁺ & F⁻

Entropy usually increases when a pure liquid or solid dissolves in a solvent.

Standard Molar Entropies

Table 19.1 • Some Standard Molar Entropy Values at 298 K				
Element	Entropy, S° (J/K∙mol)	Compound	Entropy, S° (J/K∙mol)	
C(graphite)	5.6	CH ₄ (g)	186.3	
C(diamond)	2.377	$C_2H_6(g)$	229.2	
C(vapor)	158.1	C₃H₀(g)	270.3	
Ca(s)	41.59	$CH_3OH(\ell)$	127.2	
Ar(g)	154.9	CO(g)	197.7	
H ₂ (g)	130.7	CO ₂ (g)	213.7	
0 ₂ (g)	205.1	H ₂ O(g)	188.84	
N ₂ (g)	191.6	H₂O(ℓ)	69.95	
$F_2(g)$	202.8	HCl(g)	186.2	
Cl ₂ (g)	223.1	NaCl(s)	72.11	
Br₂(ℓ)	152.2	MgO(s)	26.85	
$I_2(s)$	116.1	CaCO ₃ (s)	91.7	


Entropy Changes for Phase Changes

For a phase change, $\Delta S = q/T$ where q = heat transferred in phase change For H₂O (liq) ---> H₂O(g) $\Delta H = q = +40,700 \text{ J/mol}$

 $\Delta S = \frac{q}{T} = \frac{40,700 \text{ J/mol}}{373.15 \text{ K}} = +109 \text{ J/K} \cdot \text{mol}$

Entropy and Temperature

Calculating ΔS for a Reaction

$$\Delta S^{\circ} = \Sigma S^{\circ}$$
 (products) - ΣS° (reactants)

Consider 2 $H_2(g) + O_2(g) ---> 2 H_2O(liq)$ $\Delta S^\circ = 2 S^\circ (H_2O) - [2 S^\circ (H_2) + S^\circ (O_2)]$ $\Delta S^\circ = 2 \mod (69.9 \text{ J/K} \cdot \text{mol}) - [2 \mod (130.7 \text{ J/K} \cdot \text{mol}) + 1 \mod (205.3 \text{ J/K} \cdot \text{mol})]$

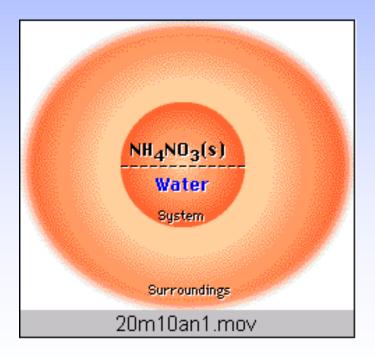
∆S° = -326.9 J/K

Note that there is a **decrease in S** because 3 mol of gas give 2 mol of liquid.

2nd Law of Thermodynamics
A reaction is spontaneous if ∆S for the universe is positive.

 $\Delta S_{universe} = \Delta S_{system} + \Delta S_{surroundings}$ $\Delta S_{universe} > 0 for spontaneous$ process

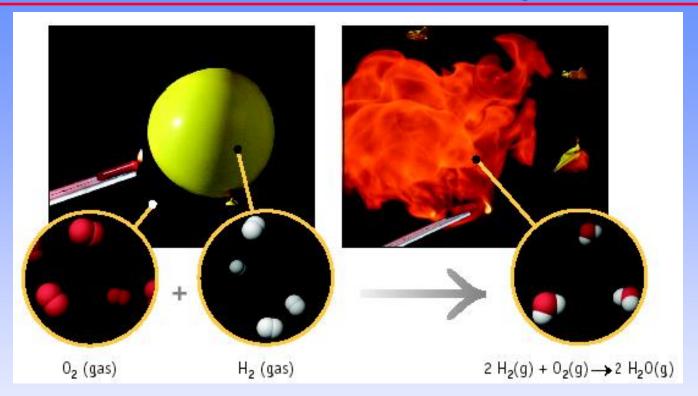
First calc. entropy created by <u>matter</u> dispersal (∆S_{system})


Next, calc. entropy created by <u>energy</u> dispersal ($\Delta S_{surround}$)

2nd Law of Thermodynamics

 $\Delta S_{universe} = \\\Delta S_{system} + \Delta S_{surroundings}$

Dissolving NH₄NO₃ in water—an entropy driven process. 24


2nd Law of Thermodynamics $2 H_2(g) + O_2(g) ---> 2 H_2O(liq)$ $\Delta S^o_{system} = -326.9 J/K$ $\Delta S^o_{surroundings} = \frac{q_{surroundings}}{T} = \frac{-\Delta H_{system}}{T}$

Can calc. that $\Delta H^{o}_{rxn} = \Delta H^{o}_{system} = -571.7 \text{ kJ}$

$$\Delta S^{\circ}_{surroundings} = \frac{-(-571.7 \text{ kJ})(1000 \text{ J/kJ})}{298.15 \text{ K}}$$

 $\Delta S^{o}_{surroundings} = +1917 \text{ J/K}$

2nd Law of Thermodynamics ²⁶

- $2 H_2(g) + O_2(g) ---> 2 H_2O(liq)$ $\Delta S^{\circ}_{system} = -326.9 J/K$ $\Delta S^{\circ}_{surroundings} = +1917 J/K$ $\Delta S^{\circ}_{universe} = +1590. J/K$
- The entropy of the universe is increasing, so the reaction is product-favored.

Spontaneous or Not?

Table 19.2 • Predicting if a Process Is Spontaneous

Туре	ΔH_{sys}^{o}	ΔS^{o}_{sys}	Spontaneous Process?
1	Exothermic process $\Delta H^{\circ}_{ m sys} < 0$	Less order $\Delta S^\circ_{ m sys} > 0$	Spontaneous under all conditions $\Delta S^\circ_{ m univ} > 0$
2	Exothermic process ∆H° _{sys} < 0	More order $\Delta S^\circ_{ m sys} < 0$	Depends on relative magnitudes of ΔH and ΔS More favorable at <i>lower</i> temperatures
3	Endothermic process $\Delta H^{\circ}_{sys} > 0$	Less order $\Delta S^{\circ}_{sys} > 0$	Depends on relative magnitudes of ΔH and ΔS More favorable at <i>higher</i> temperatures
4	Endothermic process $\Delta H^{ m o}_{ m sys} > 0$	More order $\Delta S^{\circ}_{ m sys} <$ 0	Not spontaneous under all conditions $\Delta S^{\circ}_{ m univ} < 0$

Remember that $-\Delta H^{\circ}_{sys}$ is proportional to ΔS°_{surr} An exothermic process has $\Delta S^{\circ}_{surr} > 0$.